World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Observations of the Spectral Dependence of Particle Depolarization Ratio of Aerosols Using Nasa Langley Airborne High Spectral Resolution Lidar : Volume 15, Issue 17 (11/09/2015)

By Burton, S. P.

Click here to view

Book Id: WPLBN0004023504
Format Type: PDF Article :
File Size: Pages 53
Reproduction Date: 2015

Title: Observations of the Spectral Dependence of Particle Depolarization Ratio of Aerosols Using Nasa Langley Airborne High Spectral Resolution Lidar : Volume 15, Issue 17 (11/09/2015)  
Author: Burton, S. P.
Volume: Vol. 15, Issue 17
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2015
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Kahnert, M., Cook, A. L., Ferrare, R. A., Rogers, R. R., Collins, J. E., Harper, D. B.,...Hair, J. W. (2015). Observations of the Spectral Dependence of Particle Depolarization Ratio of Aerosols Using Nasa Langley Airborne High Spectral Resolution Lidar : Volume 15, Issue 17 (11/09/2015). Retrieved from http://ebooklibrary.org/


Description
Description: NASA Langley Research Center, MS 475, Hampton, VA, 23681, USA. Particle depolarization ratio is presented for three case studies from the NASA Langley airborne High Spectral Resolution Lidar-2 (HSRL-2). Particle depolarization ratio from lidar is an indicator of non-spherical particles and is sensitive to the fraction of non-spherical particles and their size. The HSRL-2 instrument measures depolarization at three wavelengths: 355, 532, and 1064 nm. The three measurement cases presented here include two cases of dust aerosol and one case of smoke aerosol. These cases have partial analogs in earlier HSRL-1 depolarization measurements at 532 and 1064 nm and in literature, but the availability of three wavelengths gives additional insight into different scenarios for non-spherical particles in the atmosphere. A case of transported Saharan dust has a spectral dependence with a peak of 0.30 at 532 nm with smaller particle depolarization ratios of 0.27 and 0.25 at 1064 and 355 nm, respectively. A case of locally generated wind-blown North American dust has a maximum of 0.38 at 1064 nm, decreasing to 0.37 and 0.24 at 532 and 355 nm, respectively. The cause of the maximum at 1064 nm is inferred to be very large particles that have not settled out of the dust layer. The smoke layer has the opposite spectral dependence, with the peak of 0.24 at 355 nm, decreasing to 0.09 and 0.02 at 532 and 1064 nm. The depolarization in the smoke case is inferred to be due to the presence of coated soot aggregates. We also point out implications for the upcoming EarthCARE satellite, which will measure particle depolarization ratio only at 355 nm. At 355 nm, the particle depolarization ratios for all three of our case studies are very similar, indicating that smoke and dust may be more difficult to separate with EarthCARE measurements than heretofore supposed.

Summary
Observations of the spectral dependence of particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar

Excerpt
Adachi, K. and Buseck, P. R.: Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City, Atmos. Chem. Phys., 8, 6469–6481, doi:10.5194/acp-8-6469-2008, 2008.; Alvarez, J. M., Vaughan, M. A., Hostetler, C. A., Hunt, W. H., and Winker, D. M.: Calibration Technique for Polarization-Sensitive Lidars, J. Atmos. Ocean. Tech., 23, 683–699, doi:10.1175/jtech1872.1, 2006.; Ansmann, A., Tesche, M., Knippertz, P., Bierwirth, E., Althausen, D., Muller, D., and Schulz, O.: Vertical profiling of convective dust plumes in southern Morocco during SAMUM, Tellus B, 61, 340–353, doi:10.1111/j.1600-0889.2008.00384.x, 2009.; Behrendt, A. and Nakamura, T.: Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature, Opt. Express, 10, 805–817, doi:10.1364/OE.10.000805, 2002.; Bescond, A., Yon, J., Girasole, T., Jouen, C., Rozé, C., and Coppalle, A.: Numerical investigation of the possibility to determine the primary particle size of fractal aggregates by measuring light depolarization, J. Quant. Spectrosc. Ra., 126, 130–139, 2013.; Born, M. and Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Cambridge University Press, 1999.; Burton, S. P., Ferrare, R. A., Hostetler, C. A., Hair, J. W., Rogers, R. R., Obland, M. D., Butler, C. F., Cook, A. L., Harper, D. B., and Froyd, K. D.: Aerosol classification using airborne High Spectral Resolution Lidar measurements – methodology and examples, Atmos. Meas. Tech., 5, 73–98, doi:10.5194/amt-5-73-2012, 2012.; Burton, S. P., Ferrare, R. A., Vaughan, M. A., Omar, A. H., Rogers, R. R., Hostetler, C. A., and Hair, J. W.: Aerosol classification from airborne HSRL and comparisons with the CALIPSO vertical feature mask, Atmos. Meas. Tech., 6, 1397–1412, doi:10.5194/amt-6-1397-2013, 2013.; Burton, S. P., Vaughan, M. A., Ferrare, R. A., and Hostetler, C. A.: Separating mixtures of aerosol types in airborne High Spectral Resolution Lidar data, Atmos. Meas. Tech., 7, 419–436, doi:10.5194/amt-7-419-2014, 2014.; de Foy, B., Burton, S. P., Ferrare, R. A., Hostetler, C. A., Hair, J. W., Wiedinmyer, C., and Molina, L. T.: Aerosol plume transport and transformation in high spectral resolution lidar measurements and WRF-Flexpart simulations during the MILAGRO Field Campaign, Atmos. Chem. Phys., 11, 3543–3563, doi:10.5194/acp-11-3543-2011, 2011.; Fernald, F. G.: Analysis of atmospheric lidar observations – some comments, Appl. Optics, 23, 652–653, 1984.; Fiebig, M., Petzold, A., Wandinger, U., Wendisch, M., Kiemle, C., Stifter, A., Ebert, M., Rother, T., and Leiterer, U.: Optical closure for an aerosol column: method, accuracy, and inferable properties applied to a biomass-burning aerosol and its radiative forcing, J. Geophys. Res., 107, 8130, doi:10.1029/2000jd000192, 2002.; Freudenthaler, V., Esselborn, M., Wiegner, M., Heese, B., Tesche, M., Ansmann, A., Muller, D., Althausen, D., Wirth, M., Fix, A., Ehret, G., Knippertz, P., Toledano, C., Gasteiger, J., Garhammer, M., and Seefeldner, M.: Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006, Tellus B, 61, 165–179, doi:10.1111/j.1600-0889.2008.00396.x, 2009.; Gasteiger, J. and Freudenthaler, V.: Benefit of depolarization ratio at Λ = 1

 

Click To View

Additional Books


  • Contribution of Liquid, Nat and Ice Part... (by )
  • Quantification of Transport Across the B... (by )
  • Detection of Regional Scale Sea-to-air O... (by )
  • Data Assimilation in Atmospheric Chemist... (by )
  • Boreal Forest Fires in 1997 and 1998: a ... (by )
  • Observed Characteristics of Dust Storm E... (by )
  • Amine Exchange Into Ammonium Bisulfate a... (by )
  • Aerosol Effects on Clouds and Precipitat... (by )
  • Heterogeneous Freezing of Single Sulfuri... (by )
  • Ternary Solution of Sodium Chloride, Suc... (by )
  • An Empirical Model of Global Climate – P... (by )
  • Chemical Composition of Atmospheric Aero... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.