World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Improvement of Vertical and Residual Velocities in Pressure or Hybrid Sigma-pressure Coordinates in Analysis Data in the Stratosphere : Volume 7, Issue 5 (13/09/2007)

By Wohltmann, I.

Click here to view

Book Id: WPLBN0003997731
Format Type: PDF Article :
File Size: Pages 16
Reproduction Date: 2015

Title: Improvement of Vertical and Residual Velocities in Pressure or Hybrid Sigma-pressure Coordinates in Analysis Data in the Stratosphere : Volume 7, Issue 5 (13/09/2007)  
Author: Wohltmann, I.
Volume: Vol. 7, Issue 5
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Rex, M., & Wohltmann, I. (2007). Improvement of Vertical and Residual Velocities in Pressure or Hybrid Sigma-pressure Coordinates in Analysis Data in the Stratosphere : Volume 7, Issue 5 (13/09/2007). Retrieved from

Description: Alfred Wegener Institute for Polar and Marine Research, Potsdam, Germany. Stratospheric vertical winds from analysis data in pressure (p) or hybrid pressure (σ-p) coordinates, for use in e.g. chemical transport models (CTMs) or trajectory models, often suffer both from excessive noise and errors in their mean magnitude, which in turn can introduce errors in important dynamical quantities like vertical mixing or constituent transport with the residual circulation. Since vertical velocities cannot be measured directly, they are inferred from other quantities, typically from horizontal wind divergence, that is the mass continuity equation. We propose a method to calculate the vertical wind field from the thermodynamic energy equation in p or σ-p vertical coordinates that substantially reduces noise and overestimation of the residual circulation. It is completely equivalent to the approach using potential temperature (θ) as a vertical coordinate and diabatic heating rates as vertical velocities, which has already been demonstrated to give superior results to the continuity equation. It provides a quickly realizable improvement of the vertical winds, when a change of the vertical variable would cause an inadequate effort (e.g. in CTMs). The method is only applicable for stably stratified regions like the stratosphere.

Improvement of vertical and residual velocities in pressure or hybrid sigma-pressure coordinates in analysis data in the stratosphere

Andrews, D G., Holton, J R., and Leovy, C B.: Middle Atmosphere Dynamics, Academic Press, 1987.; Bregman, B., Segers, A., Krol, M., Meijer, E., and van Velthoven, P.: On the use of mass-conserving wind fields in chemistry-transport models, Atmos. Chem. Phys., 3, 447–457, 2003.; Chipperfield, M P.: New version of the TOMCAT/SLIMCAT off-line chemical transport model: Intercomparison of stratospheric tracer experiments, Quart. J. Roy. Meteorol. Soc., 132, 1179–1203, \doi10.1256/qj.05.51, 2006.; Eluszkiewicz, J., Hemler, R S., Mahlman, J D., Bruhwiler, L., and Takacs, L L.: Sensitivity of age-of-air calculations to the choice of advection scheme, J. Atmos. Sci., 57, 3185–3201, 2000.; Fueglistaler, S., Bonazzola, M., Haynes, P H., and Peter, T.: Stratospheric water vapor predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics, J. Geophys. Res., 110, D08107, \doi10.1029/2004JD005516, 2005.; Swinbank, R. and O'Neill, A.: A stratosphere-troposphere data assimilation system, Mon. Weather Rev., 122, 686–702, 1994.; Greenblatt, J B., Jost, H.-J., Loewenstein, M., Podolske, J R., Hurst, D F., Elkins, J W., Schauffler, S M., Atlas, E L., Herman, R L., Webster, C R., Bui, T P., Moore, F L., Ray, E A., Oltmans, S., Vömel, H., Blavier, J.-F., Sen, B., Stachnik, R A., Toon, G C., Engel, A., Müller, M., Schmidt, U., Bremer, H., Pierce, R B., Sinnhuber, B.-M., Chipperfield, M., and Lefèvre, F.: Tracer-based determination of vortex descent in the 1999/2000 Arctic winter, J. Geophys. Res., 107, 8279, \doi10.1029/2001JD000937, 2002.; Hall, T., Waugh, D., Boering, K., and Plumb, R.: Evaluation of transport in stratospheric models, J. Geophys. Res., 104, 18 815–18 839, 1999.; Hall, T M. and Waugh, D.: Tracer transport in the tropical stratosphere due to vertical diffusion and horizontal mixing, Geophys. Res. Lett., 24, 1383–1386, 1997.; Kistler, R E., Kalnay, E., Collins, W., Saha, S., White, G., Woollen, J., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., van~den Dool, H., Jenne, R., and Fiorino, M.: The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation, Bull. Amer. Meteorol. Soc., 82, 247–268, 2001.; Krishnamurti, T N. and Bounoua, L.: An Introduction to Numerical Weather Prediction Techniques, CRC Press, 1996.; Lait, L R.: An alternative form for potential vorticity, J. Atmos. Sci., 51, 1754–1759, 1994.; Mahowald, N M., Plumb, R A., Rasch, P J., del Corral, J., Sassi, F., and Heres, W.: Stratospheric transport in a three-dimensional isentropic coordinate model, J. Geophys. Res., 107, 4254, \doi10.1029/2001JD001313, 2002.; Monge-Sanz, B M., Chipperfield, M P., Simmons, A J., and Uppala, S M.: Mean age of air and transport in a CTM: Comparison of different ECMWF analyses, Geophys. Res. Lett., 34, L04801, \doi10.1029/2006GL028515, 2007.; Morcrette, J.-J., Clough, S A., Mlawer, E J., and Iacono, M J.: Impact of a validated radiative transfer scheme, RRTM, on the ECMWF model climate and 10-day forecasts, ECMWF Tech. Memo, 252, 47 pp., 1998.; Mote, P W., Dunkerton, T J., McIntyre, M E., Ray, E A., Haynes, P H., and Russell III, J M.: Vertical velocity, vertical diffusion, and dilution by midlatitude air in the tropical lower stratosphere, J. Geophys. Res., 103, 8651–8666, 1998.; Niwano, M., Yamazaki, K., and Shiotani, M.: Seasonal and QBO variations of ascent rate in the tropical lower stratosphere as inferred from UARS HALOE trace gas data, J. Geophys. Res., 108, 4794, \doi10.1029/2003JD003871, 2003.; Schoeberl, M R., Douglass, A R., Zhu, Z., and Pawson, S.: A comparison of the lower stratospheric age spectra derived from a global circulation model and two data assimilation systems, J. Geophys. Res., 108, \doi10.1029/2002JD002652, 2003.; Uppala, S M., KÅllberg, P., Simmons, A J., et~al.: The ERA-40 reanalysis, Quart. J. Roy. Meteorol. Soc., 131, 2961–3012, \doi10.1256/qj.04.1


Click To View

Additional Books

  • Development and Uncertainty Analysis of ... (by )
  • Atmospheric Parameters in a Subtropical ... (by )
  • Freezing of Water Droplets Colliding wit... (by )
  • Distributions and Climate Effects of Atm... (by )
  • The Rate of Water Vapor Evaporation from... (by )
  • Validation of Hno3, Clono2, and N2O5 fro... (by )
  • Ternary Solution of Sodium Chloride, Suc... (by )
  • Incidence of Rough and Irregular Atmosph... (by )
  • Spatio-temporal Variability and Principa... (by )
  • New Characteristics of Submicron Aerosol... (by )
  • Kinetic Study of the Gas-phase Reaction ... (by )
  • Large-scale Upper Tropospheric Pollution... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.