World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Simulating Black Carbon and Dust and Their Radiative Forcing in Seasonal Snow: a Case Study Over North China with Field Campaign Measurements : Volume 14, Issue 20 (30/10/2014)

By Zhao, C.

Click here to view

Book Id: WPLBN0003993469
Format Type: PDF Article :
File Size: Pages 17
Reproduction Date: 2015

Title: Simulating Black Carbon and Dust and Their Radiative Forcing in Seasonal Snow: a Case Study Over North China with Field Campaign Measurements : Volume 14, Issue 20 (30/10/2014)  
Author: Zhao, C.
Volume: Vol. 14, Issue 20
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Qian, Y., Huang, M., Leung, L. R., Hu, Z., Lu, Z., Yan, H.,...Flanner, M. G. (2014). Simulating Black Carbon and Dust and Their Radiative Forcing in Seasonal Snow: a Case Study Over North China with Field Campaign Measurements : Volume 14, Issue 20 (30/10/2014). Retrieved from

Description: Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA. A state-of-the-art regional model, the Weather Research and Forecasting (WRF) model (Skamarock et al., 2008) coupled with a chemistry component (Chem) (Grell et al., 2005), is coupled with the snow, ice, and aerosol radiative (SNICAR) model that includes the most sophisticated representation of snow metamorphism processes available for climate study. The coupled model is used to simulate black carbon (BC) and dust concentrations and their radiative forcing in seasonal snow over North China in January–February of 2010, with extensive field measurements used to evaluate the model performance. In general, the model simulated spatial variability of BC and dust mass concentrations in the top snow layer (hereafter BCS and DSTS, respectively) are consistent with observations. The model generally moderately underestimates BCS in the clean regions but significantly overestimates BCS in some polluted regions. Most model results fall within the uncertainty ranges of observations. The simulated BCS and DSTS are highest with > 5000 ng g−1 and up to 5 mg g−1, respectively, over the source regions and reduce to < 50 ng g−1 and < 1 μg g−1, respectively, in the remote regions. BCS and DSTS introduce a similar magnitude of radiative warming (~ 10 W m−2) in the snowpack, which is comparable to the magnitude of surface radiative cooling due to BC and dust in the atmosphere. This study represents an effort in using a regional modeling framework to simulate BC and dust and their direct radiative forcing in snowpack. Although a variety of observational data sets have been used to attribute model biases, some uncertainties in the results remain, which highlights the need for more observations, particularly concurrent measurements of atmospheric and snow aerosols and the deposition fluxes of aerosols, in future campaigns.

Simulating black carbon and dust and their radiative forcing in seasonal snow: a case study over North China with field campaign measurements

Dentener, F., Kinne, S., Bond, T., Boucher, O., Cofala, J., Generoso, S., Ginoux, P., Gong, S., Hoelzemann, J. J., Ito, A., Marelli, L., Penner, J. E., Putaud, J.-P., Textor, C., Schulz, M., van der Werf, G. R., and Wilson, J.: Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom, Atmos. Chem. Phys., 6, 4321–4344, doi:10.5194/acp-6-4321-2006, 2006.; Diner, D. J., Beckert, J., Reilly, T., Bruegge, C., Conel, J., Kahn, R., Martonchik, J., Ackerman, T., Davies, R., Gerstl, S., Gordon, H., Muller, J., Myneni, R., Sellers, P. J., Pinty, B., and Verstraete, M.: Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview, IEEE T., Geosci. Remote, 36, 1072–1087, 1998.; Diner, D. J., Abdou, W. A., Bruegge, C. J., Conel, J. E., Crean, K. A., Gaitley, B. J., Helmlinger, M. C., Kahn, R. A., Martonchik, J. V., and Pilorz, S. H.: MISR aerosol optical depth retrievals over southern Africa during the SAFARI-2000 dry season campaign, Geophys. Res. Lett., 28, 3127–3130, 2001.; Doherty, S. J., Warren, S. G., Grenfell, T. C., Clarke, A. D., and Brandt, R. E.: Light-absorbing impurities in Arctic snow, Atmos. Chem. Phys., 10, 11647–11680, doi:10.5194/acp-10-11647-2010, 2010.; Doherty, S. J., Grenfell, T. C., Forsstrom, S., Hegg, D. L., Brandt, R. E., and Warren, S. G.: Observed vertical redistribution of black carbon and other insoluble light-absorbing particles in melting snow, J. Geophys. Res.- Atmos., 118, 5553–5569, doi:10.1002/jgrd.50235, 2013.; Easter, R. C., Ghan, S. J., Zhang, Y., Saylor, R. D., Chapman, E. G., Laulainen, N. S., Abdul-Razzak, H., Leung, L. R., Bian, X., and Zaveri, R. A.: MIRAGE: Model Description and Evaluation of Aerosols and Trace Gases, J. Geophys. Res., 109, D20210, doi:10.1029/2004JD004571, 2004.; Fast, J. D, Gustafson Jr., W. I., Easter, R. C., Zaveri, R. A., Barnard, J. C., Chapman, E. G., and Grell, G. A.: Evolution of ozone, particulates, and aerosol direct forcing in an urban area using a new fully-coupled meteorology, chemistry, and aerosol model, J. Geophys. Res., 111, D21305, doi:10.1029/2005JD006721, 2006.; Fast, J., Aiken, A. C., Allan, J., Alexander, L., Campos, T., Canagaratna, M. R., Chapman, E., DeCarlo, P. F., de Foy, B., Gaffney, J., de Gouw, J., Doran, J. C., Emmons, L., Hodzic, A., Herndon, S. C., Huey, G., Jayne, J. T., Jimenez, J. L., Kleinman, L., Kuster, W., Marley, N., Russell, L., Ochoa, C., Onasch, T. B., Pekour, M., Song, C., Ulbrich, I. M., Warneke, C., Welsh-Bon, D., Wiedinmyer, C., Worsnop, D. R., Yu, X.-Y., and Zaveri, R.: Evaluating simulated primary anthropogenic and biomass burning organic aerosols during MILAGRO: implications for assessing treatments of secondary organic aerosols, Atmos. Chem. Phys., 9, 6191–6215, doi:10.5194/acp-9-6191-2009, 2009.; Flanner, M. G. and Zender, C. S.: Snowpack radiative heating: Influence on Tibetan Plateau climate, Geophys. Res. Lett., 32, L06501, doi:10.1029/2004GL022076, 2005.; Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch, P. J.: Present-day climate forcing and response from black carbon in snow, J. Geophys. Res., 112 , D11202, doi:10.1029/2006JD008003, 2007.; Flanner, M. G., Zender, C. S., Hess, P. G., Mahowald, N. M., Painter, T. H., Ramanathan, V., and Rasch, P. J.: Springtime warming and reduced snow cover from carbonaceous particles, Atmos. Chem. Phys., 9, 2481–2497, doi:10.5194/acp-9-


Click To View

Additional Books

  • The Impact of Channel Effect on Asian Du... (by )
  • The Influence of European Pollution on O... (by )
  • Adjoint Inverse Modeling of a Co Emissio... (by )
  • Halogens and Their Role in Polar Boundar... (by )
  • Seasonal Variations of Stable Carbon Iso... (by )
  • Decadal-scale Responses in Middle and Up... (by )
  • The Effect of Temperature and Water on S... (by )
  • Microphysical and Optical Properties of ... (by )
  • Statistical Exploration of Gaseous Eleme... (by )
  • Characterisation of Sub-micron Particle ... (by )
  • Variability of the Lagrangian Turbulent ... (by )
  • Modeling Atmospheric Co2 Concentration P... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.