World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Regional-scale Correlation Between Co2 Fire Emissions, Burned Areas, and Mid-tropospheric Co2 Daily Variations Over Southern Africa : Volume 9, Issue 5 (10/09/2009)

By Chédin, A.

Click here to view

Book Id: WPLBN0003982487
Format Type: PDF Article :
File Size: Pages 37
Reproduction Date: 2015

Title: Regional-scale Correlation Between Co2 Fire Emissions, Burned Areas, and Mid-tropospheric Co2 Daily Variations Over Southern Africa : Volume 9, Issue 5 (10/09/2009)  
Author: Chédin, A.
Volume: Vol. 9, Issue 5
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2009
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Crevoisier, C., Ciais, P., Rio, C., Armante, R., Chédin, A., Hourdin, F., & Scott, N. A. (2009). Regional-scale Correlation Between Co2 Fire Emissions, Burned Areas, and Mid-tropospheric Co2 Daily Variations Over Southern Africa : Volume 9, Issue 5 (10/09/2009). Retrieved from http://ebooklibrary.org/


Description
Description: Laboratoire de Météorologie Dynamique, IPSL, Ecole Polytechnique, 91128 Palaiseau, France. Monthly mean mid-tropospheric CO2 columns are retrieved from evening and morning observations of NOAA-10 satellite over the tropics during the period 1987–1991. We find that the difference between evening and morning CO2 columns (hereafter referred to as Daily Tropospheric Excess – DTE) increases by up to a few ppm over regions affected by fires. A high positive correlation (R2~0.8) is found between annual DTE and CO2 emissions derived from burned area (Global Fire Emission Database – GFEDv2) across 10 regions with contrasted vegetation cover in southern Africa. Seasonal variability comparison between DTE and GFEDv2 also shows a good general agreement. Only two regions south of 10° S, show a seasonal increase of DTE starting earlier and rising up more rapidly than seen in two burned area products: GFEDv2 and L3JRC, the latter established by the Joint Research Center. The phase of the L3JRC dataset is however closer to DTE observations. This misfit could come from limitations in current burned area detection algorithms (difficulty in detecting small fires). 3-D simulations of the DTE signal by the LMDz General Circulation Model, in which a pyro-thermal plume model is activated, confirm the observations. A large fraction of fire products are directly injected in the mid-troposphere, well above the boundary layer. This rapid uplift of CO2, combined with atmospheric transport patterns in southern Africa during the dry season, characterized by a fluctuating continental gyre, produces a daily DTE signal mainly positive above the source region and either positive or negative outside of the source region. On a monthly mean, this results in a persistent DTE signal above the source region of an order of 1 ppm, while the impact of large-scale advection vanishes. We conclude that the DTE signal is a quantitative proxy of fire emission spatial patterns, in particular before the ATSR or MODIS observation periods when better quality fire count and burned area data became available, and can also bring a constraint in the analysis of their present results.

Summary
Regional-scale correlation between CO2 fire emissions, burned areas, and mid-tropospheric CO2 daily variations over southern Africa

Excerpt
Aardenne van, J. A., Dentener, F. J., Olivier, J. G. J., Klein Goldewijk, C. G. M., and Lelieveld, J.: A 1°×1° resolution data set of historical anthropogenic trace gas emissions for the period 1890–1990, Glob. Change Biol., 15, 909–928, 2001.; Andreae, M. O.: Emissions of trace gases and aerosols from savanna fires, in: Fire in the Southern African Savanna: Ecological and Environmental Perspectives, edited by: van Wilgen, B. W., Andreae M. O., Goldammer J. G., et al., Witwaterstrand University Press, Johannesburg, 161–183, 1996.; Anyamba, A., Justice, C. O., Tucker, C. J., and Mahoney, R.: Seasonal to interannual variability of vegetation and fires at SAFARI 2000 sites inferred from advanced very high resolution radiometer time series data, J. Geophys. Res., 108, 108(D13), 8507, doi:10.1029/2002JD002464, 2003.; Archibald, S., Roy, D. P., van Wilgen, B. W., and Sholes, R. J.: What limits fire? An examination of drivers of burnt area in southern Africa, Glob. Change Biol., 15, 613–630, doi:10.1111/j.1365-2486.2008.01754.x, 2009.; Barbosa, P. M., Stroppiana, D., Grégoire, J. M., and Pereira, J. M. C.: An assessment of vegetation fire in Africa (1981–1991): Burned areas, burned biomass, and atmospheric emissions, Global Biogeochem. Cy., 13, 933–950, 1999.; Bryant, R. G., Bigg, G. R., Mahowald, N. M., Eckardt, F. D., and Ross, S. G.: Dust emission response to climate in southern Africa, J. Geophys. Res., 112, D09207, doi:10.1029/2005JD007025, 2007.; Cahoon, D. R., Stocks, B. J., Levine, J. S., Coter III, W. R., and O'Neill, C. P.: Seasonal distribution of African savanna fires, Nature, 359, 812–815, 1992.; Chédin, A., Serrar, S., Armante, A., Scott, N. A., and Hollingsworth, A.: Signatures of annual and seasonal variations of CO2 and other greenhouse gases from NOAA/TOVS observations and model simulations, J. Climate, 15, 95–116, 2002.; Chédin, A., Serrar, S., Scott, N. A., Crevoisier, C., and Armante, R.: First global measurement of mid-tropospheric CO2 from NOAA polar satellites: The tropical zone, J. Geophys. Res., 108, 108(D10), 4301, doi:10.1029/2003JD003439, 2003a.; Chédin, A., Saunders, R., Hollingsworth, A., Scott, N. A., Matricardi, M., Etcheto, J., Clerbaux, C., Armante, R. and Crevoisier, C.: The feasibility of monitoring CO2 from high resolution infrared sounders, J. Geophys. Res., 108(D2), 4064, doi:10.1029/2001JD001443, 2003b.; Chédin, A., Serrar, S., Scott, N. A., Pierangelo, C., and Ciais, P.: Impact of tropical biomass burning emissions on the diurnal cycle of upper tropospheric CO2 retrieved from NOAA-10 satellite observations, J. Geophys. Res., 110, D11309, doi:10.1029/2004JD005540, 2005.; Chédin, A., Scott, N. A., Armante, R., Pierangelo, C., Crevoisier, C., Fossé, O., and Ciais, P.: A quantitative link between CO2 emissions from tropical vegetation fires and the daily tropospheric excess (DTE) of CO2 seen by NOAA-10 (1987–1991), J. Geophys. Res., 113, D05302, doi:10.1029/2007JD00857

 

Click To View

Additional Books


  • Heterogeneous Chemistry of Monocarboxyli... (by )
  • Satellite Observation of Lowermost Tropo... (by )
  • Evaluation of the Volatility Basis-set A... (by )
  • In Situ Measurement of Atmospheric Co2 a... (by )
  • Technical Note: Evaluating a Simple Para... (by )
  • Characterization of Satellite-based Prox... (by )
  • The Role of Tropical Deep Convective Clo... (by )
  • Comparison of Box-air-mass-factors and R... (by )
  • Comparing Ecmwf Aod with Aeronet Observa... (by )
  • Doas Measurements of Formaldehyde and Gl... (by )
  • Clouds-aerosols-precipitation Satellite ... (by )
  • Impact of Black Carbon Aerosol Over Ital... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.