World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Doas Measurements of Formaldehyde and Glyoxal Above a South-east Asian Tropical Rainforest : Volume 12, Issue 2 (23/02/2012)

By MacDonald, S. M.

Click here to view

Book Id: WPLBN0003980540
Format Type: PDF Article :
File Size: Pages 35
Reproduction Date: 2015

Title: Doas Measurements of Formaldehyde and Glyoxal Above a South-east Asian Tropical Rainforest : Volume 12, Issue 2 (23/02/2012)  
Author: MacDonald, S. M.
Volume: Vol. 12, Issue 2
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Edwards, P. M., Jones, C. E., C. Plan, J. M., Oetjen, H., Whalley, L. K., Mahajan, A. S.,...Heard, D. E. (2012). Doas Measurements of Formaldehyde and Glyoxal Above a South-east Asian Tropical Rainforest : Volume 12, Issue 2 (23/02/2012). Retrieved from

Description: School of Chemistry, University of Leeds, Leeds LS2 9JT, UK. Tropical rainforests act as a huge contributor to the global emissions of biogenic volatile organic compounds (BVOCs). Measurements of their oxidation products, such as formaldehyde (HCHO) and glyoxal (CHOCHO), provide useful indicators of fast photochemistry occurring in the lower troposphere. However, measurements of these species in tropical forest locations are extremely limited. To redress this, HCHO and CHOCHO were measured using the long-path (LP) and multi-axis (MAX) differential optical absorption spectroscopy (DOAS) techniques above the rainforest canopy in Borneo during two campaigns in spring and summer 2008, as part of the Oxidant and Particle Photochemical Processes above a South-East Asian tropical rainforest (OP3) project. The results were compared with concurrent measurements of hydroxyl radical (OH), isoprene (C5H8) (which was the dominant organic species emitted in this forest environment), and various meteorological parameters. Formaldehyde was observed at a maximum concentration of 4.5 ppb and glyoxal at a maximum of 1.6 ppb, significantly higher than previous measurements in rural locations. A 1-D chemistry model was then used to assess the diurnal evolution of formaldehyde and glyoxal throughout the boundary layer. The results, which compare well with the LP-DOAS and MAX-DOAS observations, suggest that the majority of the glyoxal and formaldehyde is confined to the first 500 m of the boundary layer, and that the measured ratio of these species is reproduced using currently accepted product yields for the oxidation of isoprene by OH. An important conclusion is that the measured levels of glyoxal are consistent with the surprisingly high concentrations of OH measured in this environment.

DOAS measurements of formaldehyde and glyoxal above a South-East Asian tropical rainforest

Grosjean, D., Miguel, A. H., and Tavares, T. M.: Urban air-pollution in brazil - acetaldehyde and other carbonyls, Atmos. Environ., Part B-Urban Atmosphere, 24, 101–106, 1990.; Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P.: A global-model of natural volatile organic-compound emissions, J. Geophys. Res.-Atmos., 100, 8873–8892, 1995.; Hak, C., Pundt, I., Trick, S., Kern, C., Platt, U., Dommen, J., Ordóñez, C., Prévôt, A. S. H., Junkermann, W., Astorga-Lloréns, C., Larsen, B. R., Mellqvist, J., Strandberg, A., Yu, Y., Galle, B., Kleffmann, J., Lörzer, J. C., Braathen, G. O., and Volkamer, R.: Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air, Atmos. Chem. Phys., 5, 2881–2900, doi:10.5194/acp-5-2881-2005, 2005.; Heald, C. L., Jacob, D. J., Park, R. J., Russell, L. M., Huebert, B. J., Seinfeld, J. H., Liao, H., and Weber, R. J.: A large organic aerosol source in the free troposphere missing from current models, Geophys. Res. Lett., 32, 4, doi:10.1029/2005GL023831, 2005.; Heikes, B. G.: Formaldehyde and hydroperoxides at mauna-loa observatory, J. Geophys. Res.-Atmos., 97, 18001–18013, 1992.; Hopkins, J. R., Lewis, A. C., and Read, K. A.: A two-column method for long-term monitoring of non-methane hydrocarbons (nmhcs) and oxygenated volatile organic compounds (o-vocs), J. Environ. Monitor., 5, 8–13, 2003.; Huisman, A. J., Hottle, J. R., Galloway, M. M., DiGangi, J. P., Coens, K. L., Choi, W., Faloona, I. C., Gilman, J. B., Kuster, W. C., de Gouw, J., Bouvier-Brown, N. C., Goldstein, A. H., LaFranchi, B. W., Cohen, R. C., Wolfe, G. M., Thornton, J. A., Docherty, K. S., Farmer, D. K., Cubison, M. J., Jimenez, J. L., Mao, J., Brune, W. H., and Keutsch, F. N.: Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007, Atmos. Chem. Phys., 11, 8883–8897, doi:10.5194/acp-11-8883-2011, 2011.; Hewitt, C. N., Lee, J. D., MacKenzie, A. R., Barkley, M. P., Carslaw, N., Carver, G. D., Chappell, N. A., Coe, H., Collier, C., Commane, R., Davies, F., Davison, B., DiCarlo, P., Di Marco, C. F., Dorsey, J. R., Edwards, P. M., Evans, M. J., Fowler, D., Furneaux, K. L., Gallagher, M., Guenther, A., Heard, D. E., Helfter, C., Hopkins, J., Ingham, T., Irwin, M., Jones, C., Karunaharan, A., Langford, B., Lewis, A. C., Lim, S. F., MacDonald, S. M., Mahajan, A. S., Malpass, S., McFiggans, G., Mills, G., Misztal, P., Moller, S., Monks, P. S., Nemitz, E., Nicolas-Perea, V., Oetjen, H., Oram, D. E., Palmer, P. I., Phillips, G. J., Pike, R., Plane, J. M. C., Pugh, T., Pyle, J. A., Reeves, C. E., Robinson, N. H., Stewart, D., Stone, D., Whalley, L. K., and Yin, X.: Overview: oxidant and particle photochemical processes above a south-east Asian tropical rainforest (the OP3 project): introduction, rationale, location characteristics and tools, Atmos. Chem. Phys., 10, 169–199, doi:10.5194/acp-10-169-2010, 2010.; Ip, H. S. S., Huang, X. H. H., and Yu, J. Z.: Effective henry's law constants of glyoxal, glyoxylic acid, and glycolic acid, Geophys. Res. Lett., 36, 5, doi:10.1029/2008GL036212, 2009.; Jayne, J. T., Worsnop, D. R., Kolb, C. E., Swartz, E., and Davidovits, P.: Uptake of gas-phase formaldehyde by aqueous acid surfaces, J. Phys. Chem., 100, 8015–8022, 1996.; Jenkin, M. E., Saunders, S. M., Derwent, R. G., and Pilling, M. J.: Construction and application of a master chemical mechanism (mcm) for modelling tropospheric chemistry, Abstr. Pap. Am. Chem. S., 214, 116-COLL, 1997.; Jenkin, M.


Click To View

Additional Books

  • Simulation of Atmospheric Mercury Deplet... (by )
  • Estimates of Non-traditional Secondary O... (by )
  • Spatiotemporal Variations of Ambient Pm1... (by )
  • Quantifying Global Terrestrial Methanol ... (by )
  • In-situ Observations of Aerosol Particle... (by )
  • Arctic Stratospheric Dehydration – Part ... (by )
  • Multi-model Simulation of Co and Hcho in... (by )
  • Stratospheric and Tropospheric No2 Varia... (by )
  • Airborne Lidar Measurements of Surface O... (by )
  • A Critical Evaluation of Proxy Methods U... (by )
  • Competition Between Water Uptake and Ice... (by )
  • Spectral Actinic Flux in the Lower Tropo... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.