World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Spectral Albedo of Arctic Snow During Intensive Melt Period : Volume 10, Issue 11 (09/11/2010)

By Meinander, O.

Click here to view

Book Id: WPLBN0003978243
Format Type: PDF Article :
File Size: Pages 24
Reproduction Date: 2015

Title: Spectral Albedo of Arctic Snow During Intensive Melt Period : Volume 10, Issue 11 (09/11/2010)  
Author: Meinander, O.
Volume: Vol. 10, Issue 11
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2010
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Kivi, R., Meinander, O., Arola, A., Kazadzis, S., Kontu, A., Aaltonen, V.,...Manninen, T. (2010). Spectral Albedo of Arctic Snow During Intensive Melt Period : Volume 10, Issue 11 (09/11/2010). Retrieved from http://ebooklibrary.org/


Description
Description: Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland. Spectral albedo and water liquid content of intensively melting Arctic snow were measured during the Snow Reflectance Transition Experiment (SNORTEX), in Sodankylä, Finland, in April 2009. The upwelling and downwelling spectral irradiance, measured at 290–550 nm with a double monochromator spectroradiometer, revealed the snow albedo to increase as a function wavelength. At the same time, we found the albedo of melting snow to decrease by ~10%, as a function of time within one day. During four days of intensive snow melt, the albedo decreased from 0.65 to 0.45 at 330 nm, and from 0.72 to 0.53 at 450 nm. The diurnal decrease in albedo was supported by measurements of erythemally weighted broadband ultraviolet (UV) albedo. Our simultaneous ancillary data on snow water liquid content showed that the water content first increased in the surface layer, and then moved into deeper layers, after several hours of accumulation. In Radiative Transfer (RT) model calculations, the use of Lambertian assumed regional albedo, instead of the measured local albedo, showed a wavelength dependent difference between the modeled and the measured radiation by up to 9%.

Summary
Spectral albedo of arctic snow during intensive melt period

Excerpt
Arola, A., Kaurola, J., Koskinen, L., Tanskanen, A., Tikkanen, T., Taalas, P., Herman, J. R., Krotkov, N., and Fioletov, V.: A new approach to estimating the albedo for snow-covered surfaces in the satellite UV method, J. Geophys. Res., 108, D17, 4531, doi:10.1029/2003JD003492, 2003.; Bernhard, G. and Seckmeyer, G.: Uncertainty of measurements of spectral solar UV irradiance, J. Geophys. Res., 104, D12, 14321–14345, 1999.; Bernhard, G., Booth, C. R., Ehramjian, J. C., Stone, R., and Dutton, E. G.: Ultraviolet and visible radiation at Barrow, Alaska: Climatology and influencing factors on the basis of version 2 National Science Foundation network data, J. Geophys. Res., 112, D09101, doi:10.1029/2006JD007865, 2007.; Cheng, B., Vihma, T., Pirazzini, R., and Granskog, M. A.: Modelling of superimposed ice formation during the spring snowmelt period in the Baltic Sea, Ann. Glaciol., 44, 139–146, 2006.; Christner, B. C., Morris, C. E., Foreman, C. M., Cai, R., and Sands, D. C.: Ubiquity of Biological Ice Nucleators in Snowfall, Science, 29 February 2008, 319, 5867, 1214, doi:10.1126/science.1149757, 2008.; Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R., Williamson, D. L., Kiehl, J., Briegleb, B., Bitz, C., Lin, S.-J., Zhang, M., and Dai, Y.: Description of the NCAR Community Atmosphere Model (CAM 3.0), NCAR/TN-464+STR NCAR TECHNICAL NOTE June 2004, http://www.cesm.ucar.edu/models/atm-cam/docs/description/node35.html, 2004.; ECWMF, The European Centre for Medium-Range Weather Forecasts, The ECMWF Integrated Forecast System (IFS), IFS documentation CY25r1, operational on 9 April 2002, Eq. 7.29 at http://www.ecmwf.int/research/ifsdocs/CY25r1/Physics/Physics-08-05.htm, 2010.; Feister, U. and Grewe, R.: Spectral Albedo Measurements in the UV and Visible Region Over Different Types of Surfaces, Photochem. Photobiol., 62, 4, 736–744, 1995.; Grannas, A. M., Jones, A. E., Dibb, J., Ammann, M., Anastasio, C., Beine, H. J., Bergin, M., Bottenheim, J., Boxe, C. S., Carver, G., Chen, G., Crawford, J. H., Dominé, F., Frey, M. M., Guzmán, M. I., Heard, D. E., Helmig, D., Hoffmann, M. R., Honrath, R. E., Huey, L. G., Hutterli, M., Jacobi, H. W., Klán, P., Lefer, B., McConnell, J., Plane, J., Sander, R., Savarino, J., Shepson, P. B., Simpson, W. R., Sodeau, J. R., von Glasow, R., Weller, R., Wolff, E. W., and Zhu, T.: An overview of snow photochemistry: evidence, mechanisms and impacts, Atmos. Chem. Phys., 7, 4329–4373, doi:10.5194/acp-7-4329-2007, 2007.; Grenfell, T. C., Warren, S. G., and Mullen, P. C.: Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths, J. Geophys. Res., 99, D9, 18669–18684, 1994.; Kylling, A., Persen, T., Mayer, B., and Svenøe, T.: Determination of an effective spectral surface albedo from ground-based global and direct UV irradiance measurements, J. Geophys. Res., 105, D4, 4949–4959, 2000.; Li, Z. and Trishchenko A.: A Study toward an Improved Understanding of the Relationship between Visible and Shortwave Measurements, J. Atmos. Ocean. Tech., 16, 347–360, 1999.; Mayer, B. and Kylling, A.: Technical note: The libRadtran software package for radiative transfer calculations – description and examples of use, Atmos. Chem. Phys., 5, 1855–1877, doi:10.5194/acp-5-1855-2005, 2005.; Pedersen, C. A. and Winther, J.-G.: Intercomparison and validation of snow albedo parameterization schemes in climate models, Clim. Dynam., 25, 351–362, 2005.; Meinander, O., Kontu, A., Lakkala, K., Heikkilä, A., Ylianttila, L., and Toikka, M.: Diurnal variations in the UV albedo of arctic snow, Atmos. Chem. Phys., 8, 6551–6563, doi:10.5194/acp-8-6551-2008, 2008.; Meinander, O., Wuttke, S., Seckmeyer, G., Kazadzis, S., Lindfors, A., and Kyrö, E.: Solar zenith angle asymmetry cases in p

 

Click To View

Additional Books


  • Rapid Intercontinental Air Pollution Tra... (by )
  • Contribution of Mixing to the Upward Tra... (by )
  • Bannerclouds Observed at Mount Zugspitze... (by )
  • Ultraviolet Absorption Cross Sections of... (by )
  • Sudden Increases in the No2 Column Cause... (by )
  • A Parameterization of Size Resolved Belo... (by )
  • On the Variability of the Ring Effect in... (by )
  • Comparison of Ground-based Brewer and Ft... (by )
  • Atmospheric Tar Balls: Aged Primary Drop... (by )
  • Identification of Key Aerosol Population... (by )
  • Observation of Unusual Chlorine Activati... (by )
  • Uptake of Hno3 to Deliquescent Sea-salt ... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.