World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

A Computationally-efficient Secondary Organic Aerosol Module for Three-dimensional Air Quality Models : Volume 8, Issue 14 (24/07/2008)

By Liu, P.

Click here to view

Book Id: WPLBN0003977739
Format Type: PDF Article :
File Size: Pages 14
Reproduction Date: 2015

Title: A Computationally-efficient Secondary Organic Aerosol Module for Three-dimensional Air Quality Models : Volume 8, Issue 14 (24/07/2008)  
Author: Liu, P.
Volume: Vol. 8, Issue 14
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2008
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Liu, P., & Zhang, Y. (2008). A Computationally-efficient Secondary Organic Aerosol Module for Three-dimensional Air Quality Models : Volume 8, Issue 14 (24/07/2008). Retrieved from http://ebooklibrary.org/


Description
Description: Dept. of Marine, Earth, and Atmos. Sci., North Carolina State University, Raleigh, NC 27695, USA. Accurately simulating secondary organic aerosols (SOA) in three-dimensional (3-D) air quality models is challenging due to the complexity of the physics and chemistry involved and the high computational demand required. A computationally-efficient yet accurate SOA module is necessary in 3-D applications for long-term simulations and real-time air quality forecasting. A coupled gas and aerosol box model (i.e., 0-D CMAQ-MADRID 2) is used to optimize relevant processes in order to develop such a SOA module. Solving the partitioning equations for condensable volatile organic compounds (VOCs) and calculating their activity coefficients in the multicomponent mixtures are identified to be the most computationally-expensive processes. The two processes can be speeded up by relaxing the error tolerance levels and reducing the maximum number of iterations of the numerical solver for the partitioning equations for organic species; conditionally activating organic-inorganic interactions; and parameterizing the calculation of activity coefficients for organic mixtures in the hydrophilic module. The optimal speed-up method can reduce the total CPU cost by up to a factor of 31.4 from benchmark under the rural conditions with 2 ppb isoprene and by factors of 10–71 under various test conditions with 2–10 ppb isoprene and >40% relative humidity while maintaining ±15% deviation. These speed-up methods are applicable to other SOA modules that are based on partitioning theories.

Summary
A computationally-efficient secondary organic aerosol module for three-dimensional air quality models

Excerpt
Andersson-Sköld, Y. and Simpson, D.: Secondary organic aerosol formation in northern Europe: A model study, J. Geophys. Res., 106(D7), 7357–7374, 2001.; Ansari, A. S. and Pandis, S. N.: Water absorption by secondary organic aerosol and its effect on inorganic aerosol behavior, Environ. Sci. Technol., 34, 71–77, 2000.; Aumont, B., Madronich, S., Bey, I., and Tyndall, G. S.: Contribution of secondary VOC to the composition of aqueous atmospheric particles: A modeling approach, J. Atmos. Chem., 35, 59–75, 2000.; Barthelmie, R. J. and Pryor, S. C.: A model mechanism to describe oxidation of monoterpenes leading to secondary organic aerosol 1. $\alpha $-pinene and $\beta $-pinene, J. Geophys. Res., 104(D19), 23 657–23 670, 1999.; Binkowski, F. S. and Roselle, S. J.: Models-3 Community Multiscale Air Quality (CMAQ) model aerosol component 1. Model description, J. Geophys. Res., 108(D6), 4183, doi:10.1029/2001JD001409, 2003.; Bowman, F. M. and Karamalegos, A. M.: Estimated effects of composition on secondary organic aerosol mass concentrations, Environ. Sci. Technol., 36, 2701–2707, 2002.; Bowman, F. M. and Melton, J. A.: Effect of activity coefficient models on predictions of secondary organic aerosol partitioning, J. Aerosol Sci., 35, 1415–1438, 2004.; Choi, M. Y. and Chan, C. K.: The effects of organic species on the hygroscopic behaviors of inorganic aerosols, Environ. Sci. Technol., 36, 2422–2428, 2002.; Clegg, S. L., Seinfeld, J. H., and Brimblecombe, P.: Thermodynamic modeling of aqueous aerosols containing electrolytes and dissolved organic compounds, J. Aerosol Sci., 32, 713–738, 2001.; Cruz, C. N. and Pandis, S. N.: Deliquescence and hygroscopic growth of mixed inorganic-organic atmospheric aerosol, Environ. Sci. Technol., 34, 4313–4319, 2000.; Davidson, C. I., Phalen, R. F., and Solomon, P. A.: Airborne particulate matter and human health: A review, Aerosol Sci. Tech., 39, 737–749, 2005.; Finlayson-Pitts, B. J. and Pitts Jr., J. N.: Atmospheric Chemistry: Fundamentals and Experimental Techniques, John Wiley & Sons, Inc., USA, 1986.; Fredenslund, A., Jones, R. L., and Prausnitz, J. M.: Groupcontribution estimation of activity coefficients in nonideal liquid mixtures, Aiche J., 21, 1086–1099, 1975.; Fredenslund, A., Gmehling, J., and Rasmussen, P.: Vapor–Liquid equilibria using UNIFAC: a group-contribution method, Elsevier Scientific Publishing, New York, 1977.; Griffin, R. J., Cocker III, D. R., Flagan, R. C., and Seinfeld, J. H.: Organic aerosol formation from the oxidation of biogenic hydrocarbons, J. Geophys. Res., 104(D3), 3555–3567, 1999.; Griffin, R. J., Dabdub, D., Kleeman, M. J., Fraser, M. P., Cass, G. R., and Seinfeld, J. H.: Secondary organic aerosol 3. Urban/regional scale model of size- and composition-resolved aerosols, J. Geophys. Res., 107(D17), 4334, doi:10.1029/2001JD000544, 2002a.; Griffin, R. J., Dabdub, D., and Seinfeld, J. H.: Secondary organic aerosol 1. Atmospheric chemical mechanism for production of molecular constituents, J. Geophys. Res., 107(D17), 4332, doi:10.1029/2001JD000541, 2002b.; Griffin, R. J., Nguyen, K., Dabdub, D., and Seinfeld, J. H.: A coupled hydrophobic-hydrophilic model for predicting secondary organic aerosol formation, J. Atmos. Chem., 44, 171–190, 2003.; Hertel, O., Berkowicz, R., Christensen, J., and Hov, Ø.: Test of two numerical schemes for use in atmospheric transport-chemistry models, Atmos. Environ., 27A, 2591–2611, 1993.; Hesstvedt, E., Hov, Ö., and Isaksen, I. S. A.: Quasi-steady-state approximations in air pollution modeling: a comparison of two numerical schemes for oxidant prediction, Int. J. Chem. Kinet., 10, 971–994, 1978.; Hine, J. and Mookerjee, P. K.: The intrinsic hydrophilic character of organic compounds: correlations in terms of structural contributions, J. Org. Chem., 40, 292–298, 1975.; Jacobson, M. Z. and Turco, R. P.: SMVGEAR: A sparse-matrix, vectorized Gear code for atmospheric models, Atmos. Environ., 28, 273–284, 1994.; Hu, X.-M. and Zhang, Y.:

 

Click To View

Additional Books


  • Quantification of Waves in Lidar Observa... (by )
  • A Theoretical Study on Uv-spectroscopy, ... (by )
  • Measurement of Black Carbon at Syowa Sta... (by )
  • Aerosol Direct Radiative Forcing Based o... (by )
  • Impact of Land Convection on the Thermal... (by )
  • Source Apportionment of Fine Organic Aer... (by )
  • On the Formation of Sulphuric Acid-amine... (by )
  • Technical Note: Validation of Odin/Smr L... (by )
  • Tropical Tropopause Ice Clouds: a Dynami... (by )
  • Two New Sources of Reactive Gaseous Merc... (by )
  • Application of the Aventech Aimms20Aq Ai... (by )
  • Technical Note: Interference Errors in I... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.