World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Chemical Contribution to Future Tropical Ozone Change in the Lower Stratosphere : Volume 14, Issue 6 (25/03/2014)

By Meul, S.

Click here to view

Book Id: WPLBN0003993725
Format Type: PDF Article :
File Size: Pages 13
Reproduction Date: 2015

Title: Chemical Contribution to Future Tropical Ozone Change in the Lower Stratosphere : Volume 14, Issue 6 (25/03/2014)  
Author: Meul, S.
Volume: Vol. 14, Issue 6
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Oberländer, S., Garny, H., Langematz, U., Jöckel, P., & Meul, S. (2014). Chemical Contribution to Future Tropical Ozone Change in the Lower Stratosphere : Volume 14, Issue 6 (25/03/2014). Retrieved from

Description: Institut für Meteorologie, Freie Universität Berlin, Berlin, Germany. The future evolution of tropical ozone in a changing climate is investigated by analysing time slice simulations made with the chemistry–climate model EMAC. Between the present and the end of the 21st century a significant increase in ozone is found globally for the upper stratosphere and the extratropical lower stratosphere, while in the tropical lower stratosphere ozone decreases significantly by up to 30%. Previous studies have shown that this decrease is connected to changes in tropical upwelling. Here the dominant role of transport for the future ozone decrease is confirmed, but it is found that in addition changes in chemical ozone production and destruction do contribute to the ozone changes in the tropical lower stratosphere. Between 50 and 30 hPa the dynamically induced ozone decrease of up to 22% is amplified by 11–19% due to a reduced ozone production. This is counteracted by a decrease in the ozone loss causing an ozone increase by 15–28%. At 70 hPa the large ozone decrease due to transport (−52%) is reduced by an enhanced photochemical ozone production (+28%) but slightly increased (−5%) due to an enhanced ozone loss. It is found that the increase in the ozone production in the lowermost stratosphere is mainly due to a transport induced decrease in the overlying ozone column while at higher altitudes the ozone production decreases as a consequence of a chemically induced increase in the overlying ozone column. The ozone increase that is attributed to changes in ozone loss between 50 and 30 hPa is mainly caused by a slowing of the ClOx and NOx loss cycles. The enhanced ozone destruction below 70 hPa can be attributed to an increased efficiency of the HOx loss cycle. The role of ozone transport in determining the ozone trend in this region is found to depend on the changes in the net production as a reduced net production also reduces the amount of ozone that can be transported within an air parcel.

Chemical contribution to future tropical ozone change in the lower stratosphere

Austin, J., Scinocca, J., Plummer, D., Oman, L., Waugh, D., Akiyoshi, H., Bekki, S., Braesicke, P., Butchart, N., Chipperfield, M., Cugnet, D., Dameris, M., Dhomse, S., Eyring, V., Frith, S., Garcia, R. R., Garny, H., Gettelman, A., Hardiman, S. C., Kinnison, D., Lamarque, J. F., Mancini, E., Marchand, M., Michou, M., Morgenstern, O., Nakamura, T., Pawson, S., Pitari, G., Pyle, J., Rozanov, E., Shepherd, T. G., Shibata, K., Teyssèdre, H., Wilson, R. J., and Yamashita, Y.: Decline and recovery of total column ozone using a multimodel time series analysis, J. Geophys. Res., 115, D00M10, doi:10.1029/2010JD013857, 2010.; Avallone, L. M. and Prather, M. J.: Photochemical evolution of ozone in the lower tropical stratosphere, J. Geophys. Res., 101, 1457–1461, doi:10.1029/95JD03010, 1996.; Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., Holton, J . R., Alexander, M. J., Hirota, I., Horinouchi, T., Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K. and Takahashi, M.: The quasi-biennial oscillation, Rev. Geophys., 29, 179–229, doi:10.1029/1999RG000073, 2001.; Bates, D. R. and Nicolet, M.: The photochemistry of atmospheric water vapor, J. Geophys. Res., 55, 301–327, doi:10.1029/JZ055i003p00301, 1950.; Bates, D. R. and Hays, P. B.: Atmospheric nitrous oxide, Planet. Space Sci., 15, 189–197, 1967.; Chapman, S.: A Theory of Upper-Atmospheric Ozone, Mem. Roy. Meteorol. Soc., 3, 103–125, 1930.; Crutzen, P. J. and Schmailzl, U.: Chemical Budgets of the Stratosphere, Planet. Space Sci., 31, 1009–1032, 1983.; Crutzen, P. J.: The influence of nitrogen oxides on the atmospheric ozone content, Q. J. Roy. Meteorol. Soc., 96, 320–325, doi:10.1002/qj.49709640815, 1970.; Garny, H., Dameris, M., Randel, W., Bodeker, G. E., and Deckert, R.: Dynamically Forced Increase of Tropical Upwelling in the Lower Stratosphere, J. Atmos. Sci., 68, 1214–1233, doi:10.1175/2011JAS3701.1, 2011a.; Garny, H., Grewe, V., Dameris, M., Bodeker, G. E., and Stenke, A.: Attribution of ozone changes to dynamical and chemical processes in CCMs and CTMs, Geosci. Model Dev., 4, 271–286, doi:10.5194/gmd-4-271-2011, 2011b.; Gettelman, A., Hegglin, M. I., Son, S.-W., Kim, J., Fujiwara, M., Birner, T., Kremser, S., Rex, M., Añel, J. A., Akiyoshi, H., Austin, J., Bekki, S., Braesike, P., Brühl, C., Butchart, N., Chipperfield, M., Dameris, M., Dhomse, S., Garny, H., Hardiman, S. C., Jöckel, P., Kinnison, D. E., Lamarque, J. F., Mancini, E., Marchand, M., Michou, M., Morgenstern, O., Pawson, S., Pitari, G., Plummer, D., Pyle, J. A., Rozanov, E., Scinocca, J., Shepherd, T. G., Shibata, K., Smale, D., Teyssèdre, H., and Tian, W.: Multimodel assessment of the upper troposphere and lower stratosphere: Tropics and global trends, J. of Geophys. Res., 115, D00M08, doi:10.1029/2009JD013638, 2010.; Grewe, V.: The origin of ozone, Atmos. Chem. Phys., 6, 1495–1511, doi:10.5194/acp-6-1495-2006, 2006.; Haigh, J. D. and Pyle, J. A.: Ozone perturbation experiments in a two-dimensional circulation model, Q. J. Roy. Meteor. Soc., 108, 551–574, doi:10.1002/qj.49710845705, 1982.; Hanisco, T. F., Lanzendorf, E. J., Wennberg, P. O., Perkins, K. K., Stimpfle, R. M., Voss, P. B., Anderson, J. G., Cohen, R. C., Fahey, D. W., Gao, R. S., Hintsa, E. J., Salawitch, R. J., Margitan, J. J., McElroy, C. T., and Midwinter, C.: So


Click To View

Additional Books

  • A Bayesian Inversion Estimate of N2O Emi... (by )
  • Comparison of Global Inventories of Mont... (by )
  • An Intensive Study of Aerosol Optical Pr... (by )
  • Impacts of Atmospheric Circulations on A... (by )
  • Assimilation of Atmospheric Methane Prod... (by )
  • The High Arctic in Extreme Winters: Vort... (by )
  • Analysis of the Vertical Structure and S... (by )
  • Estimating the Contribution of Ion–ion R... (by )
  • Coastal Zone Production of Io Precursors... (by )
  • Aerosol Effects on the Cloud-field Prope... (by )
  • Three-dimensional Effects in Polarizatio... (by )
  • Influence of Semi-volatile Species on Pa... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.